中心动态 产业动态

南京大学《AFM》:大面积自组装石墨烯源电极,用于柔性电子和有机电子系统芯片

2026-01-16

1成果简介 
        垂直有机场效应晶体管(VOFET)因其固有的短沟道设计而备受关注,该设计可实现高频操作、低功耗及高电流密度驱动能力。然而,传统源极电极与溶液加工有机半导体之间的相容性问题,严重制约了VOFET的大规模集成与性能提升。本文,南京大学付慧婷 准聘副教授、郑庆东 教授等在《ADVANCED FUNCTIONAL MATERIALS》期刊发表名为“Large-Area Self-Assembled Graphene Source Electrodes for High-Performance Vertical Organic Field-Effect Transistors and their Arrays”的论文,研究出一种可控溶剂界面自组装策略,用于制备超薄低粗糙度石墨烯源极电极。基于源极电极与聚合物半导体(PffBT4T-2OD)分子堆积的精密调控,所得聚合物基VOFET展现出卓越性能指标:开关比高达3.4×10?,电流密度达63.2 mA cm?²,并具备优异的运行稳定性。此外,已实现工作电压低至?1.5 V、沟道长度缩减至37 nm的器件。尤为重要的是,成功制备出器件密度达3906个/cm²的大面积VOFET阵列,为高密度低功耗有机集成电路奠定基础。该突破性进展为柔性电子器件及有机电子系统级芯片应用提供了可扩展的制造解决方案。
        2图文导读

 


 

        图1、a) Schematic of the self-assembly and transfer protocol for the graphene electrodes at the air-liquid interface. b) Raman G-band intensity mapping (30 µm × 30 µm) assessing the graphene uniformity across various graphene dispersion concentrations (0.01–1.00 wt.%). c) Representative SEM image of the SGS electrode. d) AFM topography image of the SGS electrode (RMS roughness: 0.87 nm). e) UPS analysis the SGS electrode. f) Raman spectrum showing characteristic graphene bands.

 


 

        图2、a) Molecular structure of PffBT4T-2OD. b) Absorption spectra of PffBT4T-2OD film and solution (0.05 mg mL?1 in CB) with varying temperatures. c) In situ Raman monitoring of film states (λex = 473 nm). d) 2D GIWAXS patterns of PffBT4T-2OD films on bare SiO2 (left) and on SGS (right). e) In-plane and out-of-plane line-cuts for the PffBT4T-2OD films.

 


 

        图3、a) Schematic architecture of the VOFET device on the SGS electrode. b) Cross-sectional SEM image of the device (scale bar: 100 nm) with annotated layer structure. c) Subthreshold curves (ID–VGS) of VOFET based on the SGS electrode. d) Transfer curves (ID–VGS) of VOFET based on the SGS electrode. e) Output curves (ID–VDS) of VOFET based on the SGS electrode, with VGS varied from 10 to ?50 V. f) Subthreshold curve (ID–VGS) of VOFET based on the AgNWs electrode. g) Transfer curves (ID–VGS) of VOFET based on the AgNWs electrode. h) Output curves (ID–VDS) of VOFET based on the AgNWs electrode with VGS varied from 10 to ?50 V. i) Energy level alignment diagram of functional layers.

 


 

        图4、a) Transfer curves for the devices with various channel lengths at VDS = ?15 V. b) Transfer characteristics of a single VOFET during 100 consecutive I?V sweeps, with insets quantifying i) current density retention and ii) threshold voltage drift. c) The maximum Ion/Ioff and current density values of the polymeric VOFETs reported in this work and in the literature. d) Transfer curves of POFET and VOFET. e) The 6000 cycle switching tests of POFET and VOFET (test frequency?=?1?Hz, VDS = ?15 V, VGS = ?50 and 0 V, alternately). f) Schematic architecture of the low-voltage VOFET based on aluminum oxide (scale bar: 5 µm). g) Transfer curves (ID–VGS) of the low-voltage VOFET based on aluminum oxide. h) Output curves of the low-voltage VOFET based on aluminum oxide.

 


         图5、a) Schematic architecture of the monolithically integrated VOFET array. b) Circuit design diagram for the VOFET array. c) Integrated process flow. d) Optical images of VOFET arrays prepared at different pixel densities (scale bar: 200 µm). e) Transfer characteristic curves of 100 devices randomly selected from various 3 × 3 arrays. f) Distribution of on-off ratio for the 5 × 5 array. g) VT variation across 100 devices randomly chosen from various 5 × 5 arrays. h) Current density statistics of 100 devices randomly chosen from various 5 × 5 arrays.

3小结 
        综上所述,作者开发了一种可行的制备策略,能够制造出具有极低粗糙度(均方根值<1纳米)和穿孔结构的大面积(6.25平方厘米)石墨烯源极。通过将这些溶液加工的源极与高结晶度聚合物半导体PffBT4T-2OD结合使用,我们制备出了沟道长度缩小至37纳米的VOFET,突破了传统OFET的主要局限性。性能最佳的VOFET展现出卓越的电学特性:开关比高达3.4×10?,电流密度达63.2 mA cm?²。通过引入氧化铝等高介电常数材料,其工作电压进一步降低至?1.5 V。这些基于SGS技术的VOFET展现出令人鼓舞的稳定性:经100次I-V循环后阈值电压漂移极小,6000次测试循环后电流衰减可忽略。此外,本研究制备出器件密度高达3906个/cm²的高密度VOFET阵列,其平均器件性能优异,充分体现了溶液加工源极与活性层的均匀性。由于该制备工艺不依赖特定基底,为柔性VOFET及可穿戴电子设备的制造提供了可行方案。更重要的是,该电极制备策略可推广至其他光电子器件的制造,例如光学耦合器(OPDs)、有机激光二极管(OLETs)和有机发光二极管(OLEDs)。
       文献: